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2 National Research Council Canada, Institute for Microstructural Science, Ottawa K1A 0R6, Canada

Received 13 May 1998

Abstract. We study the conductance of a square quantum dot, modeling the potential with a self-consistent
Thomas-Fermi approximation. The resulting potential is characterized by level statistics indicative of
mixed chaotic and regular electron dynamics within the dot in spite of the regular geometry of the gates
defining the dot. We calculate numerically, for the case of a quantum dot with soft confinement, the weak
localization (WL) correction. We demonstrate that this confining potential may generate either Lorentzian
or linear lineshapes depending on the number of modes in the leads. Finally, we present experimental WL
data for a lithographically square dot and compare the results with numerical calculations. We analyze
the experimental results and numerical simulations in terms of semiclassical and random matrix theory
(RMT) predictions and discuss their limitations as far as real experimental structures are concerned. Our
results indicate that direct application of the above predictions to distinguish between chaotic and regular
dynamics in a particular cavity can not always lead to reliable conclusions as the shape and magnitude of
the WL correction can be strongly sensitive to the geometry-specific, non-universal features of the system.

PACS. 73.23.-b Mesoscopic systems – 73.20.Fz Weak or Anderson localization – 73.23.Ad Ballistic
transport

1 Introduction

Various aspects of the electrical conductance through
quantum dots and other mesoscopic structures have been
studied extensively both experimentally and theoretically
since the technology of fabricating such structures was
developed (for a review, see [1]). An interesting exam-
ple is the ballistic motion of electrons through a quan-
tum dot, which occurs when the geometrical size of the
dot is smaller than the elastic and inelastic mean free
paths of the electrons. In this case the geometrical shape
of the potential, rather than disorder-induced scattering
and/or electron-electron interactions determine the trans-
port properties of the phase-coherent electrons in the dot.
Recently a number of semiclassical predictions have been
made regarding the statistical properties of quantum con-
duction fluctuations. In particular, Baranger et al. [2] have
shown that the ballistic weak localization (WL) effect, is
sensitive to the shape of the system. The terminology of
weak localization is introduced for this kind of systems
in direct analogy with the coherent backscattering effects
typical for disordered systems and the associated self-
averaging over different impurity configurations. In the
present case, however, the role of impurities is replaced
by the geometry of the device and an averaging over sam-
ples/devices or energy is performed instead of impurity
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configurations. Specifically, for quantum dots whose clas-
sical counterparts generate chaotic dynamics, the semi-
classical approach of Baranger et al. [2] gives a Lorentzian
shape of the energy-averaged WL peak,

〈R(B)〉 = R0 +∆R/[1 + (2B/αφ0)2] (1)

whereas for non-chaotic (regular) cavities the lineshape is
linear

R0 − 〈R(B)〉 ∝ |B|. (2)

R0 is the average reflection coefficient without weak lo-
calization effects, ∆R the correction for B = 0, φ0 = h/e
the flux quantum, and α = (2πS)−1 the inverse of the
typical area S times 2π. The magnitude of the weak local-
ization correction ∆R has been estimated within a ran-
dom S−matrix theory (RMT) [3–9] and the semiclassical
approach [10] and is shown to depend on the number of
modes in the leads, the strength of the coupling, the sym-
metry of the structure and the phase-breaking time.

These theoretical studies stimulated a large amount
of experimental activity. Up to date, a number of groups
have reported WL measurements in quantum dots with
a wide variety of shapes [11–18]. Some of these studies
have even been included in recent textbooks and a re-
view as examples of a transition from integrability to chaos
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[3,19,20]. However, it remains the case that the interpre-
tation of the above experiments is controversial.

Indeed, the first systematic experimental study of the
WL shape in the chaotic (stadium-shaped) and regular
(circular) quantum dots was reported by Chang et al. [11].
In agreement with the semiclassical predictions they found
a Lorentzian WL shape for the chaotic situation and a
linear shape for the case of a regular dot. However, this
experiment still remains the only one where the expected
difference was positively identified. In the subsequent ex-
periments of Berry et al. [12] and Lee et al. [18] on a simi-
lar circular dot with the same lead positions, a Lorentzian
WL peak shape was observed (instead of the expected lin-
ear one). Moreover, Lütjering et al. [16] and Lee et al. [18]
reported linear WL peaks for a variety of chaotic struc-
tures [21] (instead of the expected Lorentzian ones). In the
recent experiment by Keller et al. [17] a Lorentzian-shaped
WL peak was found for both chaotic and regular cavities.
However, it is worth stressing that while the WL shape is
not always consistent with semiclassical predictions, the
effective area of the dot, as extracted from the fitting to
the Lorentzian (1), is often in a good agreement with the
actual area of the dot deduced from the lithographical
shape, high-field Aharonov-Bohm oscillations etc.

This brief review of existing experimental results
demonstrates that further studies are clearly required to
answer one of the central questions in this field. Namely,
is it possible, on the basis of the experimentally observed
WL lineshape (Lorentzian vs. linear), to make a definite
conclusion about the character of the underlying classical
electron dynamics (i.e. chaotic vs. regular)?

In this paper we attempt to answer this question for
a case that mimics experimental realities. The first im-
portant aspect is that we take only a small number of
opens channels into account. As opposed to the usual nu-
merical approach where a hard-wall confining potential is
assumed, we start with the lithographical shape of the
gates and calculate self-consistently the realistic potential
inside the dot using the Thomas-Fermi approximation. We
perform a detailed numerical analysis of the effect of the
soft confining potential on the character of the conduc-
tance oscillations. To the best of our knowledge this as-
pect of electron transport in quantum dots has not been
addressed to date in the literature. We note that recent
papers have stressed the important consequences of soft-
wall potentials in nanostructures with regard to changes
in the level statistics [22] and the fractal nature of con-
ductance fluctuations [23].

Transport characteristics of an open structure (chaotic
vs. regular) are usually analyzed on the basis of the cor-
responding properties of the related closed structure. In
addition, the nominal shape of the lithographic gates is
usually used to draw conclusions on the character of elec-
tron dynamics within the dot. We show that this approach
may be misleading as far as the electron dynamics of the
actual dot is concerned. In particular, we calculate the
level spacing statistics for the realistic confining potential
inside a nominally (i.e. lithographically) square dot. Con-
siderable level repulsion in the energy spectrum indicates

the presence of irregular behavior. The corresponding level
statistics is found to be effectively in between the Poisson
and Wigner distributions, i.e., the dynamics is mixed –
both regular and chaotic aspects are present. This is in
contrast to the regular dynamics of the ideal square bil-
liard.

Finally, we investigate, both theoretically and exper-
imentally, the ballistic weak localization correction of a
nominally square dot. In contrast to many experiments
where a comparison with the semiclassical theory has been
performed using energy or ensemble averaging, we use
temperature averaging in a single dot. As shown in previ-
ous work [24], if the temperature is raised so that Ohmic
addition is established in the dot and the conductance os-
cillations are smeared out, temperature averaging is equiv-
alent to energy averaging (in the sense that a comparison
with semiclassical predictions becomes meaningful). The
results of reference [24] were used to analyze experimental
data of Bird et al. [15] which were obtained for a sin-
gle square dot in the extreme quantum regime of very
low temperature (up to ∼ 25 mK). It was shown that in
this regime an interpretation of the observed shapes of the
WL curves on the basis of the semiclassical predictions be-
comes ambiguous, because the condition for the validity of
the latter has not been met. Numerical simulations of ref-
erence [24] demonstrate that, in agreement with the semi-
classical theory, the WL corrections for an ideal square dot
have typically a linear lineshape. It was also shown that
deviations from perfect square confinement may have a
significant effect on the detailed shape of the WL curve. In
the present work we go beyond the hard-wall confinement
model used in [24] and perform numerical calculations
for the WL peak for the realistic self-consistent potential.
We demonstrate that this confining potential may gener-
ate either a Lorentzian or a linear lineshape depending on
the number of modes in the leads. Finally, we present our
experimental data of the temperature-averaged ballistic
weak localization of a square quantum dot and compare
it to the results of numerical calculations. We analyze the
experimental results and numerical simulations in terms of
semiclassical and the RMT approaches and discuss their
limitations in detail as far as realistic experimental struc-
tures are concerned.

2 Modeling of the quantum dot
and the self-consistent confining potential

In modeling the dot we assume that it is fabricated from
a modulation-doped AlxGa1−xAs/GaAs heterostructure
with a planar interface. Parallel to the interface there ex-
ists a very thin δ-layer of dopants in the alloy region.
Leaving immobile ionized dopants behind, electrons are
then transferred from this δ-layer to the semiconductor
interface where they form a uniform high-mobility two-
dimensional electron gas (2DEG). The metallic gate is on
the top surface of the wafer. By varying the applied gate
voltage the electron density at the interface can be varied
and even depleted. If the metallic gate is lithographically
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Fig. 1. (a) Contour plot of the potential resulting from self-
consistent Thomas-Fermi calculations. The potential difference
between each line is 8 meV. The density of positive charges
ns = 2 × 1015 m−2, the distance between the δ -layer and
the 2DEG is 5 nm, the chemical potential µ = 5 meV above
the minimum of the potential, the dielectric constant ε = 13,
and the effective mass m∗ = 0.067me which are values for
GaAs. The enclosed area is used to calculate level statistics.
Inset is the model of the shape of the metal sheet that creates
the quantum dot. In our calculations is W = b = 800 nm
and l = 200 nm. (b) Level statistics of the enclosed area of
the dot. The bars represent the probability to find states with
normalized separation ∆S. The width of each bar is 5 µeV, the
number of levels calculated is 1000, the highest energy 60 meV,
and the dot is discretized in units of 2.5 nm. The long-dashed
line is the Poisson distribution, the short-dashed line is the
Wigner distribution and the dotted line is the Semi-Poisson
distribution.

patterned, the electron gas can also be laterally confined
and dots of various shapes may be created. In the present
case we consider the lithographic pattern shown in the in-
set of Figure 1a, i.e., a nominally square dot with narrow
leads connecting to left and right reservoirs.

To obtain the effective potential of the 2DEG we have
used a simple two layers model [25,26,22,27]. The two lay-
ers consist of the (smeared) positively charged δ-layer and
the 2DEG itself. The pattern of the gate is projected di-
rectly onto the δ-layer. In the two layer model the positive
charge under the gated regions is assumed to be canceled
out by the gates. Effectively we therefore create a distribu-
tion of constant positive charge in the δ-layer having the
same geometric shape as the ungated regions in the top

metallic gate. Electric charge in the 2DEG is assumed to
mirror the effective positive charge in the δ-layer. To first
order the confining potential equals the bare potential Vc,
that results from the positive charge only. Obviously this
potential will be modified by the electrons occupying the
device. Let this repulsive electrostatic potential be Ve. To
find the total modified, self-consistent potential Vc + Ve

we have made use of the Thomas-Fermi approximation
(TF) [28]. For many applications this method works well
when used with the kinds of devices currently being stud-
ied as a result of their smooth features. The basic idea is
that the system behaves locally as a homogeneous 2DEG
with local density ρ(r‖) and Fermi wave number kF (r‖) at
position r‖ = (x, y). If µ is the overall chemical potential
the following equality must be satisfied:

~2k2
F(r‖)

2m
+ Vc(r‖) + Ve(r‖) = µ. (3)

The relation between the Fermi wave number and the local
2D density is

ρ(r‖) =
k2

F(r‖)

2π
(4)

and the Hartree interaction term is

Ve(r‖) =
e2

4πε0ε

∫ dr′‖ρ(r′‖)

|r− r′|
· (5)

Initially for the iterative solution we set Ve = 0 in equa-
tion (3), i.e., effectively there are no electrons in the
2DEG. To avoid a numerical instability in consecutive it-
erations we use a combination of 5% of the new values and
95% of the previous ones to generate the next set of val-
ues for Ve to be inserted in equation (3). This is repeated
until the potential has converged. The resulting potential
is shown in Figure 1. The potential shown is connected to
semi-infinite leads with the same transversal shape as the
slice connecting to the leads. Obviously the effective con-
finement is much softer than the original lithographic one
and is qualitatively similar to the potentials discussed by
Stopa [27,15]. The potential is formed as a saddle-point
at the constrictions, where it can be very well approxi-
mated with a harmonic potential in the y-direction, and a
negative harmonic potential in the x-direction. In our cal-
culations we obtain ~ωx = 1.2 meV and ~ωy = 3.5 meV,
which are quite reasonable values [22,29–31].

3 Level statistics and the nature
of the dynamics

As noted in the introduction, the dynamics of a nominally
isolated square billiard, as in the inset in Figure 1a, is reg-
ular. One may then wonder if our refined self-consistent
potential still supports the same type of dynamics or if the
smoothing results in qualitatively new features, or more
specifically, does the system turn into an irregular one. To
investigate this issue we have considered the energy level



364 The European Physical Journal B

statistics [32] for the nominally isolated dot for B = 0. We
thus apply the usual diagnostic tools in saying that if the
nearest level separations ∆E follow the Poisson distribu-
tion

P (s) = e−s, (6)

with s = ∆E/〈∆E〉, then the system is regular and has
high probability of small level separations. On the other
hand, if one finds the Wigner distribution

P (s) =
π

2
se−

π
4 s

2

, (7)

then the dynamics is regarded as fully chaotic and lev-
els repel each other. There are also a number of distri-
butions for intermediate statistic, e.g., Brody [33] and
Berry-Robnik [34]. More recently the Semi-Poisson dis-
tribution

P (s) = 4se−2s (8)

is suggested by Gerland et al. [35] to have universal charac-
ter, i.e., when gradually changing from a chaotic to a reg-
ular system, the level statistics distribution always passes
through the Semi-Poisson distribution at some point. The
Semi-Poisson distribution shows level repulsion as the
Wigner distribution but is more similar to the Poisson
distribution for larger separations.

Because of the limited range of energy levels of inter-
est here, we may use the rectangular area indicated in
Figure 1a when characterizing the level spectrum. Among
the four possible symmetries for the nominally isolated dot
we have chosen the odd-odd symmetry [22], i.e., wave-
functions must vanish at the boundaries indicated by dot-
ted lines in the figure and have odd symmetry with respect
to the x- and y-axes. The level spectrum was obtained by
numerical discretization of the Schrödinger equation with
∆x = ∆y = 2.5 nm. About one thousand levels with ener-
gies less than ∼ 60 meV relative the bottom of the cavity
have been included in the histogram in Figure 1b. Evi-
dently there is substantial level repulsion because the self-
consistent potential is non-separable. As the figure also
shows, the corresponding level statistics are rather close
to the Wigner distribution. However, the latter do not fit
exactly the calculated statistics, which indicates a mixed
dynamics. Poincaré plots for the corresponding classical
case confirm this picture. Thus we have obtained a system
with chaotic features in spite of a regular lithography.

4 Conductance fluctuations

In this section we compute the conductance through
the quantum dot modeled with the soft potential calcu-
lated in the previous section and compare it with the
corresponding result for the hard-wall confinement. The
zero-temperature conductance, G(ε, T = 0), is related
to the total transmission coefficient, T =

∑
α,β |tβ,α|

2,

by the Landauer formula G(ε, T = 0) = (2e2/h)T ,
where |tβ,α|2 is the transmission coefficient from the

Fig. 2. Calculated conductance vs. energy for different temper-
atures and at zero magnetic field. The solid lines are the tem-
perature averaged curves for the quantum dot and the dashed
lines are half the conductance for single quantum point con-
tact. The curves have been offset for clarity

mode α in the entrance lead to the mode β in the
exit lead at energy ε [1]. The effects of a finite tem-
perature are accounted for in a standard way by the
convolution of G(ε, 0) with the derivative of the Fermi-
Dirac distribution, f(EF, T ), at the given Fermi energy,
EF, G(EF, T ) = −

∫
dεG(ε, 0)∂f(ε−EF, T )/∂ε [1]. The

transmission coefficient T is calculated by solving a full
quantum mechanical scattering problem for the potential
shown in Figure 1. The semi-infinite wide channels to the
right and left of the dot serve as source and drain. Hence
the asymptotic scattering states are plane wave states
propagating along the wide channels times the transverse
states. The latter are obtained for the self-consistent po-
tential of Figure 1 taken in the region far from the central
dot (x = ±1000 nm). For the transport calculations here
we make use of a hybrid recursive Green-function tech-
nique in which the magnetic field is included both in the
leads and the dot regions [36]. The accuracy of the nu-
merical method has been checked with a single quantum
point contact where the results for the total transmission
are found to be in excellent agreement with analytic re-
sults [37].

Figure 2 shows the calculated conductance of the quan-
tum dot as a function of the Fermi energy at differ-
ent temperatures and at zero magnetic field. The zero-
temperature conductance exhibits characteristic ballistic
fluctuations caused by interference of phase-coherent elec-
trons inside the dot. As the temperature increases, the
ballistic fluctuations are gradually smeared out. At T ≡
TOhmic & 2 K the conductance of the dot approaches
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its Ohmic value corresponding to the addition of the re-
sistances of the two individual quantum point contacts
(QPC) defining the dot, G−1

Ohmic = 2G−1
QPC. Obviously, the

Ohmic addition of the resistances is already achieved by
the temperature (energy) averaging of the phase-coherent
electrons, i.e., inelastic processes are yet to be included.

Conductance oscillations in a dot of the same size but
in a hard-wall confinement model was studied in refer-
ence [24]. It was found that the conductance approaches
its Ohmic value at the same temperatures T & 2 K. Ex-
perimentally, however, the Ohmic addition is shown to
occur at somewhat lower temperatures [38]. It was ar-
gued [24] that this difference in the temperature may
be attributed to the effect of the soft confinement which
might be an additional factor to the temperature smear-
ing which makes the conductance oscillations weaker. For
example, the conductance of a single QPC with hard wall
confinement exhibits rapid fluctuations (superimposed on
the conductance steps) due to the mixing of modes in-
side and outside the QPC [1,39]. When a realistic model
of a soft parabolic confinement is used, the mode mixing
is strongly suppressed and these conductance fluctuations
disappear [37]. However, in contrast to a single QPC, the
results of the present numerical calculations for the quan-
tum dots demonstrate that soft confinement has appar-
ently little effect on the smearing of fluctuations in com-
parison to the hard-wall case. This can be understood as
follows. As shown by explicit transport calculations of the
type used here, transport through the open dot is effec-
tively mediated by eigenstates of the corresponding closed
structure [40–42]. This is also an underlying basic assump-
tion in the RM theory [43]. This implies that incoming
and reflected states are coupled to several eigenstates of
the dot so that a strong mode mixing inevitably occurs.
The resulting transmission coefficient will be governed by
the interference of the states inside the dot and by the
strength of coupling of the wave function near the open-
ings to the states in the leads. In contrast, in a single
QPC the transmission is determined by the number of
propagating modes in its narrowest part. In the case of a
realistic parabolic confinement, the potential is separable.
As a result, transport is adiabatic (no mode mixing oc-
curs in the narrowest part of the QPC) and therefore the
conductance fluctuations are suppressed.

5 Temperature-averaged weak localization

5.1 Numerical calculations

In this section we perform a numerical study of the
temperature-averaged WL of a quantum dot with a re-
alistic soft confinement. It was shown previously that
the semiclassical prediction for the energy-averaged WL
peak becomes applicable for a single device in the limit
of elevated temperature when Ohmic behavior is estab-
lished in the dot [24]. In turn, the Ohmic behavior (i.e.
G−1

Ohmic = 2G−1
QPC, see previous section) implies that the

electron velocity distribution in the dot is effectively ran-
domized by multiple boundary reflections and averaging

Fig. 3. Calculated conductance vs. magnetic field, varying
temperature and keeping the energy constant at 21.5 meV
(three open channels).

over a wide energy interval, due to the effect of the finite
temperature. This means that the temperature averaging
provides the energy averaging required by the semiclassi-
cal theory. We stress here that performing the tempera-
ture averaging we completely disregard inelastic processes
(electron-electron interaction etc.). The latter cause the
loss of the phase coherence at elevated temperatures. How-
ever, we demonstrate below that for real systems one can
still study the temperature averaged WL in a single device
at sufficiently low temperatures when the dephasing does
not completely destroy coherent motion.

Figure 3 shows a representative magnetoresistance of
the dot with the potential of Figure 1a for different tem-
peratures. The Fermi energy is set to 21 meV which cor-
responds to 3 propagating modes in the constrictions. For
low temperatures (T . 0.5 K) the magnetoresistance does
not exhibit any regular features, being strongly sensitive
to minute variations of the Fermi energy. As the tempera-
ture is increased above the limit set by the Ohmic behav-
ior (i.e. ∼2 K for the dot under consideration), ballistic
fluctuations are smeared out and the shape of the curve
does not undergo any further significant changes. The WL
correction, that results from the temperature smearing, is
reduced from ∆R ∼ 0.21 at T = 1 K to ∆R ∼ 0.12 at
T = 4 K. These trends in the temperature behavior of the
magnetoresistance of the quantum dot with soft confine-
ment is qualitatively similar to that of an idealized square
quantum dot with a hard-wall potential [24].

The WL lineshapes at fixed temperature but for dif-
ferent number of modes, N , in the constrictions are shown
in Figure 4. In our calculations we use a fixed poten-
tial, Figure 1a, and change N by changing the Fermi
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Fig. 4. Calculated conductance vs. magnetic field, varying the
number of open channels and keeping the temperature constant
at 2 K. The energies are 14.5 meV, 18.0 meV, 21.5 meV, and
28.5 meV for N = 1, 2, 3, and 5 respectively. The dashed lines
for N = 3 and N = 5 are Lorentzian fits.

energy of incoming electrons. Note that the lineshape of
the temperature-averaged WL peak remains rather sim-
ilar as long as the Fermi energy lies in a range where
the number of propagating modes in the leads does not
change (Fig. 5). When the number of open channels in
the leads is set to one and two, N = 1, 2, the conductance
increases rather (quasi-)linearly and no Lorentzian fit to
the WL lineshape is possible. If the number of conducting
channels is greater or equal to three, the WL lineshape is
well-described by a Lorentzian. (However, in many cases
the Lorentzian lineshape is distorted by a characteristic
“shoulder” structure which is also seen in the experiment,
Fig. 4). When N = 4, 5 the best fit to equation (1) gives a
typical area S which is in rather good agreement (∼ 15%)
with the effective area of the dot. This is similar to a
square dot with hard walls where the linear lineshape is
evident for N ≥ 3 [24]. Note, that according to the RMT-
approach [8] no WL correction (∆R = 0) is expected for
the structures under consideration, which have a reflection
symmetry through an axis perpendicular to the current.
Numerical calculations show that this does not hold for
the dot at hand, ∆R = 0.15 ∼ 0.2 when N = 1 ∼ 3.
However, ∆R decreases with increased number of modes,
∆R = 0.05 ∼ 0.06 for N = 4, 5.

We conclude this section with a brief discussion of the
effect of direct trajectories connecting the entrance and
exit leads. Such trajectories may be responsible for non-
universal features in the conductance [2]. In experiments

Fig. 5. Calculated conductance vs. magnetic field with N = 4
for three different energies at T = 2 K.

these trajectories are often eliminated by adding a stopper
which blocks the directly transmitted path. However, for
the structure under consideration the effect of these tra-
jectories is negligible. This is because the incoming elec-
trons enter the dot in a collimated beam directed over the
diagonal of the dot due to a classical horn collimation ef-
fect [41]. As a result, only a small fraction of the incoming
electron exit the dot without first being scattered off the
walls.

5.2 Experiment

The inset of Figure 6 contains a micro-graph of an iden-
tical device to the one used in these measurements. The
dot was defined electro-statically by means of four gates
which were deposited on a high mobility AlGaAs/GaAs
wafer. The bulk 2DEG mobility (density) ranged between
2 × 106 cm2/Vs (1.7 × 1011 cm−2) and 4.3 × 106 cm2/Vs
(3.3 × 1011 cm−2) depending on the amount of illumi-
nation with a red light emitting diode. The 2DEG was
positioned 95 nm below the top surface of the wafer. The
four gates performed the following roles. One gate defined
the right hand edge of the dot. Two finger gates defined
the entrance and exits of the dot while the fourth gate
(the plunger gate) defined the left hand edge of the dot.
The finger gates were used to control the number of modes
in the entrance and exit leads whilst the plunger gate was
used to control the width of the dot. A nominal size of the
dot was 450 × 490 nm. Edge state backscattering tech-
niques were used to determine the number of modes in
the entrance and exit leads as a function of the voltage
applied to either the finger or plunger gate voltage for
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Fig. 6. Experimental conductance vs. magnetic field for three
open channels and different temperatures. The dotted line is a
Lorentzian fit to the T = 1.0 K curve. Inset is the experimental
device.

a fixed voltage applied to the right hand gate. These mea-
surements were repeated for different temperatures for a
configuration in which there were three modes in the con-
strictions.

Measurements were made on a dilution refrigerator us-
ing standard low frequency AC techniques. The tempera-
ture was varied between 0.1 K and 1.5 K. These temper-
atures are lower than the calculated TOhmic ≈ 2 K. We
choose the lower temperature to reduce the effects of in-
elastic scattering which may be important in a real dot at
elevated temperatures T & 1K. Figure 6 shows the con-
ductance versus magnetic field for different temperatures
with the number of open channels N = 3. For all temper-
atures the WL peak has a Lorentzian lineshape giving an
effective area (according to Eq. (1)) S ≈ 6.5 × 10−14 m2.
The lithographical area is Slith ≈ 1.6 × 10−13 m2, which
gives a typical area which is about 40% of the actual one.
This is consistent with our numerical model for the case
of three modes in the leads where the same relation is
about 35%. The magnitude of the WL correction is de-
creasing with increasing temperature from ∆R ∼ 0.15 at
T = 100 mK to ∆R ∼ 0.04 at T = 1.5 K. All values
are between the RMT predictions ∆R = 0, expected for
structures with reflection symmetry through an axis per-
pendicular to the current, and ∆R = N/(4N + 2) = 0.21

when N = 3, for asymmetric structures. Note that the
temperature dependence of the amplitude of the exper-
imental WL corrections is in good agreement with the
calculated one.

5.3 Discussion

One of the most striking findings of the numerical cal-
culations on the temperature averaged WL is that the
same (chaotic) quantum dot generates both linear and
Lorentzian lineshape of the WL depending on the lead
conditions (i.e. number of available open channels).

In order to understand this feature and its relations to
the semiclassical [2] and the RMT predictions we recall
the main assumptions used in the above theories. The key
points in the semiclassical approach [2] is the exponential
distribution of the classical areas A enclosed by a classical
path in chaotic structures,

P (A) ∼ e−α|A|, (9)

and the assumption of uniformity (the area distribution
does not depend on the incident angle). For the regular
structure, the area distribution is characterized by the
power law

P (A) ∼ A−β (10)

for large A and it depends on the incident angle of the
particle. The difference between these two distributions
yields different lineshapes of the WL peak as given by
equations (1, 2). Classical numerical simulations confirm
the above conjectures on the area distribution for a num-
ber of chaotic and regular structures [2,44,45]. However,
classical simulations also demonstrate that the above dis-
tributions are sensitive to the lead positions and details
of the structure. In particular, for the same stadium bil-
liard, both the exponential and the power-law distribution
were obtained. Which one depends on the particular po-
sition of the leads [45]. The algebraic distribution (10)
was also found in the stadium-shaped quantum dot with
a soft confinement [23], the chaotic system with a mixed
phase space. In addition, a pronounced deviation from
equation (9) at small areas has been found for the an-
tidot arrays embedded in a square [16], the system which
classically exhibits hard chaos. This deviation (related to
the specific short-time trajectories in the structure) was
shown to lead to the non-universal features in the WL
lineshape.

The exponential distribution of the classical areas in
the chaotic cavity is a consequence of the classical expo-
nential escape probability via a hole [46],

P (t) ∼ e−γt, (11)

where the escape rate γ is related to the parameter α,
α ∝

√
γ (see [44] for detailed calculations of γ and α for

different structures). In contrast, the escape probability in
a classical regular cavity is given by the slower power-law
dependence,

P (t) ∼ t−ξ. (12)
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Numerous classical numerical simulations [46,2,44,45]
have confirmed the exponential and the power-law decays
in correspondingly chaotic and regular systems, although
a significant deviation [47] from (11) and even a crossover
to the delayed power-law escape rate for the chaotic bil-
liards was detected [48,23]. The possibility of the power-
law area distribution and the delayed algebraic decay in
the classical chaotic system is related to the existence of
the marginally stable periodic orbits where a particle can
be trapped for a long time.

However, recent theoretical and experimental stud-
ies [48,49] show that the decay in a corresponding quan-
tum system is qualitatively different from its classical
counterpart. Namely, the probability that the quantum
system decays at time t after its formation is

P (t) ∼ t−2−M/2, (13)

whereM is the number of the open channels. Note that the
difference between (13) and (11) is not due to the existence
of the marginally stable periodic orbits (which may cause
an algebraically delayed escape rate even in a classically
chaotic system as was discussed above), but a consequence
of the quantum dynamics. Thus, because of the qualitative
difference in the escape probability in the classical and
corresponding quantum mechanical systems it is not quite
clear to what extent one can justify equation (9) (which
essentially relies on the classical exponential decay law
(11)) in the description of the coherent electron dynamics
in the quantum system.

It is important to stress that the WL corrections (1, 2)
are derived within a framework of a diagonal approxima-
tion using a stationary phase approximation for the eval-
uation of semiclassical Green functions. The diagonal ap-
proximation implies that only trajectories with the same
entrance and exit angle, of electrons propagating in the
same mode in the leads, contribute to the WL correc-
tions. It has been noted [2], however, that in some cases
the off-diagonal contribution may be comparable [10] or
even dominate the diagonal ones, leading to positive cor-
rections to the classical magnetoresistance. Besides, the
stationary phase approximation is shown to be invalid in
the case of a low mode number [10,47], i.e., in the case
relevant to most experiments.

It is difficult to say which of the above mentioned fac-
tors plays a dominant role in the discrepancy between the
semiclassical predictions (1, 2) and the exact numerical
calculations for the device at hand. Nevertheless, any of
the above factors (not included in the initial assumption
used in derivation of (1, 2)) may significantly modify the
WL corrections of a specific structure used in the experi-
ment. Thus, in our opinion, the detection of the Lorentzian
or linear lineshape in a particular cavity does not neces-
sary mean that the corresponding dynamics is chaotic or
regular. Instead, the observed dependencies may rather re-
flect specific features of the geometry under consideration
such as existence of non-universal short-time orbits, effects
of mixed dynamics, the lead position, etc. This conclusion
is supported by a number of experimental observations.
Indeed, as discussed in the introduction, in most of the

experiments performed to date there is no apparent cor-
relation between the observed lineshape of the WL and
the expected one. In particular, for the case of N = 3
modes in the leads our numerical calculations (showing
the Lorentzian lineshape) are in agreement with our ex-
perimental data as well as with the results reported by
Lütjering et al. [16]. The linear lineshape seen in the cal-
culations for a low number of modes are in accordance
to the data reported by Bird et al. [14] for N = 2 for
a similar dot. However, in contrast to our numerical re-
sults, the square dots generated the linear lineshape for
N = 2, 3 in experiments of Lee et al. [18] as well as the
Lorentzian one for N = 2 as reported by Chan et al. [13].
Different WL lineshapes observed in nominally identical
circular devices [11,12,18] further stress the fragile char-
acter of these dependencies and their extreme sensitiv-
ity to the non-universal features related to the existence
of characteristic periodic orbits, different lead coupling,
chosen energy interval, impurity configurations etc. When
many modes are occupied, the numerical results are in bet-
ter agreement with the semiclassical predictions, which is
also consistent with the basic assumptions made in the
original derivation of the lineshape. However, it should be
noted that most of the experiments reported to date refer
to the case of a few mode regime in the leads.

Now let us focus on the RMT approach to the WL cor-
rections [3–9]. In this approach the scattering S−matrix
is constructed on the basis of the appropriate statisti-
cal ensemble. The RMT predicts the Lorentzian shape
of the WL corrections for any number of modes in the
leads including N = 1 and any strength of the coupling
between the leads and the dot [6,9]. It is important to
stress, however, that the RMT is valid for a completely
chaotic dot and it does not take into account any system-
specific features and completely disregards the effects of
non-universal characteristic related to the short periodic
orbits etc. (Note that the recent work of Prange [50] at-
tempts to incorporate the knowledge of short periodic or-
bits into the RMT approach). Therefore, direct applica-
tion of the RMT to many systems where periodic orbits
are known to play an important role (like, for example,
square, circular, stadium quantum dots) can not be justi-
fied. This is probably the case for the dot under consid-
eration (with regular component of motion being present)
where neither experimental nor numerical calculated WL
corrections agree with the RMT predictions. As both the
temperature and the WL correction are averaging effects
there should be no need to take temperature into account
in the RMT predictions [7]. However, the numerical and
experimental results described above, show a significant
dependence on temperature for the WL correction. For low
temperatures the averaging is not large enough to make
the averaging in the RMT valid. When the temperature
is close to TOhmic the WL correction is reduced, but still
significant.

Recently the RMT was used to describe an inelas-
tic scattering in the dot [7] on the basis of the Büttiker
model [51] of a fictitious lead with Nφ phase-breaking
channels. Within this approach Nφ is a phenomenological
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parameter of the theory which can be determined by the
comparison of the experimentally observed WL correction
to the theoretical one, ∆G ≈ −N/2(2N + Nφ) (2e2/h).
This means that any deviations from the RMT predictions
where inelastic scattering is not included are attributed
to the effect of the phase-breaking processes. However,
as shown above, the magnitude of the WL correction
can be strongly sensitive to the shape-specific features
of the dot. Thus, the above deviations can simply reflect
the geometry-specific characteristics and be unrelated to
the inelastic scattering inside the dot, such that the value
of Nφ extracted from the ∆G can be rather misleading.

6 Conclusions

The conductance including the weak localization correc-
tion of a nominally square quantum dot has been studied
both theoretically and experimentally. The confinement
induced by remote gates has been modeled on the basis of
the self-consistent Thomas-Fermi approximation. The re-
sulting confining potential is shown to give rise to consid-
erable level repulsion which is an indication of the chaotic
dynamics inside the dot. This is in contrast to the regular
dynamics in a square billiard with hard-wall boundaries.

The resulting soft potential is then used in full
quantum-mechanical transport calculations. It was shown
that, in contrast to previous conjectures, the soft con-
finement has no apparent effect on the smearing of the
conductance fluctuations in comparison to the hard-wall
scenario. The physical explanation for this is given.

Numerical calculations have been carried out to in-
vestigate a temperature averaged weak localization in the
dot. One of the most striking findings of the numerical
calculations on the temperature averaged WL is that the
same (chaotic) quantum dot generates both linear and
Lorentzian lineshape of the WL depending on the lead
conditions (i.e. number of available open channels). We
also present experimental WL data for a lithographically
square dot and compare the results with numerical cal-
culations. We find that the semiclassical and the random
matrix theory predictions of the shape and the magni-
tude of the weak localization corrections are not always in
agreement with our findings. The discrepancy is especially
pronounced for the case of a few open channels. A critical
analysis of the above theories is given with a particular
emphasis of their application to real dots studied in to-
day’s experiments. Our results suggest that the lineshape
of the WL (Lorentzian or linear) does not necessary reflect
the character of underlying electron dynamics (chaotic or
regular) but may rather be related to geometry-specific
features of the dot. We therefore conclude that direct ap-
plication of the semiclassical and RMT predictions, equa-
tions (1, 2), to distinguish between chaotic and regular
dynamics in a particular cavity can not always lead to re-
liable conclusions as the shape and magnitude of the WL
correction can be strongly sensitive to the shape-specific
features of the dot.
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